

Stochastic optimization of energy systems on highperformance computers

Cosmin G. Petra

Mathematics and Computer Science Division
Argonne National Laboratory

petra@mcs.anl.gov

INFORMS COMPUTING SOCIETY CONFERENCE 2015

Richmond, Virginia
Jan 11, 2015

Outline

- Parallel interior-point solver for stochastic optimization PIPS-IPM
 - Algorithmic developments
 - Implementation
 - Performance studies: parallel efficiency and time-to-solution
- Modeling frameworks StochJuMP
- Application: the impact of wind correlation on power grid economic dispatch operations

Stochastic two-stage problems with recourse

- Traditionally known as two-stage stochastic programming with recourse
- The first decision stage is deterministic and corresponds to the "now" decision
- The second decision stage depends on the random event and the first-stage decision; it gives event-dependent decisions.
- The second-stage decisions are recourse actions that minimize the "bad" effects caused by the first-stage decision.
 - In other words, the second-stage consists of a minimization problem

$$\min_{x_0} \left\{ g_0(x_0) + \mathbb{E} \bigg[\min_{x} g(x, \xi) \bigg] \right\}$$
 subj. to. $W(\xi)x = b(\xi) - T(\xi)x_0$ subj. to. $A_0x_0 = b_0$ $x \ge 0$

 The objective is to minimize the cost associated with the first-stage decisions plus the expectation of the recourse cost.

Optimization under uncertainty

Two-stage stochastic programming with recourse ("here-and-now")

$$\min_{x_0} \left\{ f_0(x_0) + \mathbb{E} \bigg[\min_{x} f(x, \omega) \bigg] \right\}$$
 subj. to. $W(\omega) x = b(\omega) - T(\omega) x_0$ subj. to. $A_0 x_0 = b_0$ $x \ge 0$

Large-scale (dual) block-angular LPs

Extensive form

- In terminology of stochastic LPs:
 - First-stage variables (decision now): x_0
 - Second-stage variables (recourse decision): $X_1, ..., X_N$
 - Each diagonal block is a realization of a random variable (scenario)

Computational challenges and difficulties

- May require many scenarios (100s, 1,000s, 10,000s ...) to accurately model uncertainty
- "Large" scenarios (W_i up to 250,000 x 250,000)
- "Large" 1st stage (1,000s, 10,000s of variables)
- Easy to build a practical instance that requires terabytes of RAM to solve
 - → Requires distributed memory
- Current practice in power grid industry is to solve 24-hour horizon (deterministic) instances in under 1 hour
- Need to solve under strict time requirements

Solving the SAA problem

- Interior-point methods (IPMs) applied to the extensive form
 - Polynomial iteration complexity: $O(\sqrt{n}L)$ (in theory, but is conservative)
 - IPMs perform better in practice (infeasible primal-dual path-following)
 - Two linear systems solved at each iteration
 - Direct solvers needs to be used because IPMs linear systems are ill-conditioned and needs to be solved accurately
 - We solve the SAA problems with a standard IPM (Mehrotra's predictor-corrector) and specialized linear algebra → PIPS-IPM (Petra et.al.)
- Alternative algorithms: Benders-type decompositions, simplex, stochastic gradient
 - Much easier to implement but higher iteration complexity (not scalable)
 - Also inferior convergence (local) behavior (not accurate)
 - Ratio of computations and communication lower -> latency affects parallel efficiency
 - Prone to load imbalancing
 - Suitable for heterogeneous computing platforms (see ATR: Wright, Linderoth, 2005)

Linear algebra of primal-dual interior-point methods (IPM)

Convex quadratic problem

Min
$$\frac{1}{2}x^TQx + c^Tx$$

subj. to. $Ax = b$
 $x \ge 0$

Multi-stage SP

Two-stage SP

IPM Linear System

$$\begin{bmatrix} Q + \Lambda & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = rhs$$

Special Structure of KKT System (Arrow-shaped)

$$\begin{bmatrix} K_1 & B_1 \\ \vdots \\ K_N & B_N \\ B_1^T & \dots & B_N^T & K_0 \end{bmatrix} \begin{bmatrix} \Delta z_1 \\ \vdots \\ \Delta z_N \\ \Delta z_0 \end{bmatrix} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \\ r_0 \end{bmatrix}$$

where,

$$K_i := \begin{bmatrix} \bar{Q}_i & W_i^T \\ W_i & 0 \end{bmatrix}, \qquad K_0 := \begin{bmatrix} \bar{Q} & A^T \\ A & 0 \end{bmatrix},$$
$$B_i := \begin{bmatrix} 0 & 0 \\ T_i & 0 \end{bmatrix}, \qquad i = 1, 2, \dots, N.$$

Block Elimination

$$\begin{bmatrix} K_1 & B_1 \\ \vdots & \vdots \\ K_N & B_N \\ B_1^T & \dots & B_N^T & K_0 \end{bmatrix} \begin{bmatrix} \Delta z_1 \\ \vdots \\ \Delta z_N \\ \Delta z_0 \end{bmatrix} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \\ r_0 \end{bmatrix}$$

Multiply row i by $-B_i^T K_i^{-1}$ and sum all the rows to obtain

$$\left(K_0 - \sum_{i=1}^{N} B_i^T K_i^{-1} B_i\right) \Delta z_0 = r_0 - \sum_{i=1}^{N} B_i^T K_i^{-1} r_i$$

The matrix $C:=K_0-\sum_{i=1}^N B_i^T K_i^{-1}B_i$ is the Schur-complement of the diagonal K_1,\ldots,K_N block.

Solution Procedure for KKT System – a compact view

- 1. Calculate $B_i^T K_i^{-1} B_i$, i = 1, ..., N ("Compute S.C.")
- 2. Form $C := K_0 \sum_{i=1}^N B_i^T K_i^{-1} B_i$ ("Form S.C.")
- 3. Factorize $C = L_0 D_0 L_0^T$ ("Factor S.C.")
- 4. Solve $\Delta z_0 = C^{-1}(r_0 \sum_{i=1}^N B_i^T K_i^{-1} r_i)$
- 5. Solve $\Delta z_i = K_i^{-1}(B_i \Delta z_0 r_i), i = 1, ..., N$

Parallel computational pattern

Implementation considerations

- Codename: PIPS-IPM
- C++ code based on OOQP optimization solver (S. Wright & M. Gertz, ANL 2003)
- Hybrid parallel: MPI+OpenMP/GPU.
- Data matrices are sparse
- Direct (sparse and dense) factorizations are needed
 - saddle-point linear systems: symmetric but indefinite
 - increasingly ill-conditioned as the optimality is approached.
- Second-stage linear systems handled with off-the-shelf sparse linear solvers (MA27/57/86 or PARDISO, other can be adopted as well)
- The dense Schur complement is solved using LAPACK/MAGMA.

Strong scaling – BG/P

# Nodes	Scenarios per Node	Execution Time (min.)	Scaling Efficiency	
4,096	8	125.	_	
8,192	4	63.	99%	
16,384	2	32.	98%	
32,768	1	16.	96%	

For real-time simulations "Compute" times need to be drastically reduced!

Incomplete augmented factorization

"Compute S.C." (Step 1):
$$L_{22}U_{22} = -B_i^T K_i^{-1} B_i$$

$$\begin{bmatrix} K_i & B_i^T \\ B_i & 0 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

UC12 – BG/P

Test Problem	Solver	Threads/MPI	$B_i^T K_i^{-1} B$ Time (Sec.)	
UC4	MA57	1	29.65	
	PARDISO-SC	1	2.45	
	PARDISO-SC	2	1.32	
	PARDISO-SC	4	0.79	
UC12	MA57	1	292.02	
	PARDISO-SC	1	50.39	
	PARDISO-SC	2	26.09	
	PARDISO-SC	4	13.81	
UC24	MA57	1	>3600	
	PARDISO-SC	1	308.193	
	PARDISO-SC	2	157.63	
	PARDISO-SC	4	81.11	

UC24 - XC30

# of MPI	(b) Nu	mber of	threads	s per p	rocess	on XC30
ranks	1	1	2	4	8	16
	PARDISO			PARDISC	O-SC	
1	168.3	19.0	12.9	8.4	6.2	5.9
2	175.3	18.9	12.4	8.5	7.4	
4	194.6	19.5	13.8	12.1		
8	284.2	22.1	21.8		-	
16	281.6	38.5		_		

Weak scaling efficiency

Largest instance has 4.08 billion decision variables and 4.12 billion constraints.

Strong scaling

The instance used in the XK7 runs has 4.08 billion decision variables and 4.12 billion constraints.

Solve to completion – UC12 on BG/P

- Before: 4 hours 10 minutes wall time to solve UC4 problem with 8k scenarios on 8k nodes (on BG/P)
- Now: UC24 32,768 scenarios in approx. 40 minutes
- UC12 on BG/P

Nodes/scens	Wall time (sec)	IPM Iterations	Time per IPM iteration (sec)
4096	3548.5	103	33.57
8192	3883.7	112	34.67
16384	4208.8	123	34.80
32768	4781.7	133	35.95

In addition to implementation, the algorithm is also scalable

StochJuMP - parallel algebraic modelling for stochastic optimization

J. Huchette, M. Lubin, C. Petra, "Parallel algebraic modeling for stochastic optimization," High Performance Technical Computing in Dynamic Languages (HPTCDL), SC'14.

Expressing and constructing the stochastic optimization problem

- Express the problem in a human-readible, mathematical format
- Automatic transformation to the low-level format of the solver(s)
 - efficient and distributed-memory generation of the large models

The problem's structure is passed transparently to the solver

JuMP – modeling language for Mathematical Programming in Julia

- Miles Lubin (MIT), Iain Dunning (MIT)
- Julia a fresh approach to scientific and technical computing
 - high-level, high-performance, open-source dynamic language for technical computing
 - keeps productivity of dynamic languages without giving up speed (2x of C/C++/Fortran)
- JuMP compact, easy-to-use AML in Julia for modelling LP/QP/MILP/MIQCQP

```
m = Model(:Max)
@defVar(m, 0 <= x[j=1:N] <= 1)
@setObjective(m, sum{profit[j] * x[j], j=1:N})
@addConstraint(m, sum{weight[j] * x[j], j = 1:N} <= C)</pre>
```

- Macros instead of operator overloading (known to have poor performance)
- Efficient sparse internal generation and representation of the data
- Nonlinear programming fully functional

Table: Linear-quadratic control benchmark results. N=M is the grid size. Total time (in seconds) to process the model definition and produce the output file in LP and MPS formats (as available).

	JuMP	/Julia	AMPL	L Gurobi/C++		Pulp/	Pulp/PyPy	
N	LP	MPS	MPS	LP	MPS	LP	MPS	LP
250	0.5	0.9	0.8	1.2	1.1	8.3	7.2	13.3
500	2.0	3.6	3.0	4.5	4.4	27.6	24.4	53.4
750	5.0	8.4	6.7	10.2	10.1	61.0	54.5	121.0
1,000	9.2	15.5	11.6	17.6	17.3	108.2	97.5	214.7

StochJuMP - parallel algebraic modelling for stochastic optimization (Huchette, Lubin, Petra -2014)

- Extension of JuMP for stochastic LP/QP/MILP/ MIQCQP
- Interfaced with PIPS, runs efficiently on "Blues" LCRC cluster
- Parallel, memory-distributed generation of the model

On the role of wind covariance estimation in power grid dispatch – a case study using PIPS-IPM

Petra et al., "Economic Impacts of Wind Covariance Estimation on Power Grid Operations," submitted to IEEE Power Systems, 2014.

Case study for the economic dispatch for Illinois grid

- The network consists of 2522 lines, 1908 buses, 870 demand buses, 225 generators, of which 32 are wind farms.
- Wind "installed" capacity is 17%. Adoption in around 15%.

$$\begin{aligned} & \min_{x,X(\omega),f,F(\omega)} & \sum_{i \in G} c_i x_i + \mathbb{E}_{\omega} \sum_{i \in G} p_i | x_i - y_i(\omega) | \\ & \text{subj.to:} & \tau_n(f) + \sum_{i \in T(n)} x_i = d_n, \forall n \in N \\ & \tau_n(F(\omega)) + \sum_{i \in T(n)} y_i(\omega) = d_n, \forall n \in N, \omega \in \Omega \\ & f, F(\omega) \in U, \forall \omega \in \Omega \\ & x_i, y_i(\omega) \in U_i, \forall i \in G, \omega \in \Omega \end{aligned}$$

- RBLW covariance matrix ("corr.") vs diagonal covariance matrix ("indep.")
- Argonne's BG/P and BG/Q platforms used in numerical simulations.

Integrating wind samples in economic dispatch models

- Numerical weather forecasting is used to sample wind.
- Approach 1: Wind farms bid energy based on their own, independent forecasts. The ISO then considers all the scenarios in the ED model.
 - Correlation among wind farms is lost
 - An exhaustive list of scenarios leads to a gigantic ED problem. Not clear how to bundle scenarios to reduce dimensionality.
- Approach 2: Centralized forecast at the ISO level

 Here we show that Approach 2 should be considered: ignoring or missing correlation information leads to inefficient dispatch.

Motivating example – role of correlation in dispatch

- A very simplistic model: 3 generators (of which 2 wind farms and 1 thermal), 1 demand node, no line constraints
- Power outputs of the wind farms are $W_1 \sim \mathcal{N}(w_1, \sigma_1)$ and $W_2 \sim \mathcal{N}(w_2, \sigma_2)$, and the correlation is ρ ($\rho = \mathbb{E}[(W_1 w_1)(W_2 w_2)]/(\sigma_1 \sigma_2)$).
- How does correlation affect the optimal dispatch cost?
- The optimization problem can be solved analytically, and the (expected) optimal dispatch cost is:

$$c_d(\rho) = c_w d + (c_{th} - c_w)((d - w_1 - w_2)\Phi(d, \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2) + \sigma^2\phi(d, \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2))$$

- Here Φ and ϕ are the cumulative distribution and probability distribution functions of $W=W_1+W_2$
- The optimal dispatch cost is an **increasing function** of the correlation ρ !

Motivating example - continued

- Ignoring positive correlation leads to an "optimistic dispatch"
- Ignoring negative correlations results in an "pessimistic dispatch"

- In both cases higher dispatch costs are obtained over time:
 - "optimistic": wind predicted more than wind realized: expensive reserves were used.
 - "pessimistic": wind predicted less than wind realized: more (expensive) thermal power than necessary were dispatched.

What about real-world large-scale power grid systems?

Analytical analysis of such complex systems is virtually impossible.

(E. Constantinescu)

Dispatch cost – correlation vs independent resampling

95% confidence intervals for the dispatch cost for predicted and realized costs, each with (Corr) and without (Indep) correlation information

- 1.42% gap or \$10,967 (256 scenarios)
- Gap can potentially add up to approx. \$100 million over a year.

Prices - correlation vs independent resampling

95% confidence intervals for prices at a typical bus

- Gap also present in the ahead prices.
- Opportunities for market arbitrage for players with better covariance information.

Thank you for your attention!

Questions?

